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ABSTRACT

GeneSet2miRNA is the first web-based tool which
is able to identify whether or not a gene list has
a signature of miRNA-regulatory activity. As input,
GeneSet2miRNA accepts a list of genes. As output,
a list of miRNA-regulatory models is provided. A
miRNA-regulatory model is a group of miRNAs
(single, pair, triplet or quadruplet) that is predicted
to regulate a significant subset of genes from the
submitted list. GeneSet2miRNA provides a user
friendly dialog-driven web page submission avail-
able for several model organisms. GeneSet2miRNA
is freely available at http://mips.helmholtz-muench
en.de/proj/gene2mir/.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs that
recognize and bind to (partially) complementary sites
often in the 30-untranslated regions of target genes in the
cell and regulate protein production of the target tran-
script. Different combinations of miRNAs are expressed
in different cell types (1,2). It has been demonstrated that
miRNAs have roles in almost all biological processes in
the cell by regulating gene activity. A number of miRNAs
have also been linked to cell diseases (3,4).

High-throughput genomics technologies become a stan-
dard routine in many experimental laboratories. Sets of
genes are delivered on a regular basis, whose measured
states, such as mRNA or protein expression levels, gene-
methylation status, gene copy number variations, loss of
heterozygosity or homozygous deletions, are different
between the explored cell states. It is logical to further
expect that genes found at differential states can bear a
signature of regulatory activity from miRNAs. To our
knowledge there is no computational tool available,
which can be exploited for this task.

A common step for analyses of gene list is an inference
of biological processes that are statistically overrepre-
sented among derived genes. A number of tools employing
available gene-functional annotations (5,6) as well as
pathway databases (7,8) have been developed (9–17).
The advantages and limitations of most of these tools
are reviewed in (8,18).
We have developed GeneSet2miRNA, a web tool which

can identify significant subsets of genes from the given
gene list which are the targets of a single or several
miRNAs. As the number of experimentally validated
gene targets for the most miRNAs is relatively small in
comparison to the actual (expected) number,
GeneSet2miRNA is using predicted targets (19).
GeneSet2miRNA provides a user friendly dialog-driven
submission web page and supports most available gene
identifiers. GeneSet2miRNA supports automatic analyses
for several model organisms: Homo sapiens, Mus musculus
and Rattus norvegicus.

MATERIALS AND METHODS

miRNA cooperative model

Each miRNA f is associated with a set of genes Sf which
were predicted to be the targets of f. To account for coop-
erative behavior of miRNAs we consider not only single
miRNA but pairs, triplets and quadruplets of miRNAs.
Each such pair, triplet or quadruplet, as well as each single
miRNA, is referred further as a miRNA-regulatory model
of degree 1 (single miRNA model), 2 (pair), 3 (triplet)
and 4 (quadruplet). Each regulatory model r (f1, f2, ð) is
associated with a set of genes Sr, where Sr is the set of
genes that are regulated by all miRNAs from the model r
(f1, f2, . . .). Formally, Sr is computed as the intersection of
sets (Sf1, Sf2, . . .): Sr= (Sf1 AND Sf2 AND).
There are relatively few experimentally validated

miRNA—gene interactions in comparison to expected
numbers. For example, the current release of the
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miRecords database (19) includes only 1135 records
of validated miRNA-target interactions between 301
miRNAs and 902 target genes in seven animal species.
For this reason, GeneSet2miRNA uses the Predicted
Targets component of the miRecords database (19).
The Predicted Targets component of miRecords stores
predicted miRNA targets produced by 11 established
miRNA target prediction programs.
The sets of predicted targets vary significantly between

different programs. We consider a simple scoring system
to arrange predictions by confidence levels: the more tools
predict the interaction, the better the confidence. We use
two thresholds to define for each miRNA f two models:
soft and strict. In the first case, a gene is added to the set Sf

if the interaction is predicted by at least four programs,
and, in the second case the interaction should be predicted
by at least five programs. It is clear that the strict model is
a subset of the soft model.

GeneSet2miRNA

GeneSet2miRNA accepts a query list of genes (referred to
as set A) and for each regulatory model r the number ar
genes in set A from the set Sr is counted. In the next step
the null hypothesis H0 (the set A is independent of set Sr)
is tested using the number ar, the size of set A, the size of
set Sr and the total number of genes in the whole genome.
Hypergeometric tests (accounted for multiple testing using
Monte Carlo simulation procedure) is employed to iden-
tify miRNA models which are significantly intersected
with the set A (18).
Consideration of all possible complex regulatory

models (miRNA triplets and miRNA quadruplets) is com-
putationally infeasible due to combinatorial complexity.
For this reason a search algorithm is used based on
greedy heuristics (9). Greedy heuristics does not guarantee
the optimal solution is found in every case, but signifi-
cantly reduce the computational complexity.
To adjust p-values for multiple testing

GeneSet2miRNA employs the Monte-Carlo simulation
approach. A set of genes of size A (equal to the size of
the input list) are randomly sampled N times from the set
B (the set of all genes from the genome). Each time the top
enriched miRNA-regulatory models of degree 1 (2, 3 and
4) is identified based on hypergeometric test and the best
p-value from such test is added to the corresponding dis-
tribution. After repeating this procedure N times we get
four (for each degree a distribution) distributions of size
N of the best p-values for the models inferred from
a random gene list of size A. To estimate the corrected
p-value the hypergeometric p-value for each regulatory
model r (pr) inferred from the input gene list is compared
to the p-values (pd) from the corresponding distribution
(taking into account the degree of the model). Let us
denote k to be the number of times pr is equal to or infe-
rior (pr� pd) than the p-values from the distribution. The
estimate of the corrected p-value is given by formula
pcorrected= (k+1)/N. This corresponds exactly to the def-
inition of an experiment–wise Westfall and Young p-value
(9,12,20–22). For degree 1 (single miRNA model) N is
fixed to 10 000 and thus the estimate of the lowest possible

p-value is limited to 0.0001. For higher degrees (2, 3, 4)
the N is fixed to 1000 and the estimate of the lowest pos-
sible p-value is limited to 0.001. More details on the
searching algorithm and p-value adjustment can be
found in (9,10,23). We need also to point out that
p-values are estimated assuming that genes from the
input list were sampled from the whole genome.

Automatically supported annotations and gene Ids

As input GeneSet2miRNA accepts several types of gene
or protein identifiers. For example, for the human genome
GeneSet2miRNA supports identifiers from ‘Entrez Gene’
(24), ‘UniProt/Swiss-Prot’, ‘Gene Symbol’ (24,25),
‘UniGene’ (24), ‘Ensembl’ (26), ‘RefSeq Protein ID’,
‘RefSeq Transcript ID’ (27) and ‘Affymetrix probe
codes’ (28). Additionally a mixture of several identifier
types is possible. In the first step user supplied gene Ids
are mapped to ‘Entrez Gene’ identifiers. For this purpose
files from NCBI and Affymetrix web sites are used.
Detailed information on data sources used by
GeneSet2miRNA is in Table 1.

The user gets full information on the mapping of the
supplied gene ids. We would like to point out that protein
and gene identifiers can be highly ambiguous (29) with
multiple synonymous variants. For this reason the quality
of the retrieved annotation can be different for different
types of identifiers. To escape multiple mapping issues
we recommend submitting ‘Entrez Gene’ identifies to
GeneSet2miRNA.

GeneSet2miRNA application to experimental data

Here we present several examples of analyses of real data
by GeneSet2miRNA to illustrate the potential utility the
user can get from it.

Example 1. Proof of the principle

One of the concerns related to the current version of the
tool might be that GeneSet2miRNA employs predicted
targets for miRNAs. The next examples clearly demon-
strate that this is not a limitation. To prove this we used
several gene lists reported by recently published studies
that used microarray analysis to reveal genes whose
expression is affected by the presence of excess amount
of different miRNAs. For example, in (30) the HepG2
liver cancer cells and A549 lung cancer cells were trans-
ected with synthetic miRNAs corresponding to let-7.
Total RNA were isolated from the cells 72 h after transfec-
tion and hybridized to Affymetrix U133 arrays. The study
(31) focused on two miRNAs: miR-1 and miR-124. miR-1
(miR-124, miR-373) RNA duplexes were transfected
into HeLa cells, and mRNA was purified and profiled
on microarrays. The number of reported differentially
expressed genes in all cases is presented in Table 2.

We used five gene lists presented in Table 2 as an input
for our tool. In all five cases the top enriched single
miRNA model corresponds to the transfected miRNA.
For example, in the third case (96 repressed genes in
HeLa by miR-1 transfection) GeneSet2miRNA reports
both soft and strict hsa-miR-1 models (hsa-miR-1.4 and
hsa-miR-1.5) as top enriched ones. Note that the number
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after the dot indicates the threshold used to generate the
set Sf (the set of regulated genes). For a gene to be
included into the set Sf the threshold specifies the minimal
number of programs which predicts gene—hsa-miR-1
interactions. According to the miRecords database, 80
out of 96 repressed genes (Table 3) were predicted to be
a target of at least one miRNA (the Column ‘SET A size’).
The column ‘SET B size’ specifies the total number of
genes in the genome that are predicted to be regulated
by at least one miRNA according to miRecords. Thirty-
seven genes from the set A are predicted to be regulated by
hsa-miR-1 by at least five programs (column ‘SET A tar-
gets’, model hsa-miR-1.5) and 52 genes are predicted to be
regulated by hsa-miR-1 by at least four programs (column
‘SET A targets’, model hsa-miR-1.4). The column ‘SET B
targets’ specifies the number of genes from the whole
genome regulated by corresponding miRNA model. The
p-values of both soft and strict hsa-miR-1 models esti-
mated by Monte Carlo simulation are below 0.0001.

There are also several models significantly enriched
related to different miRNAs (hsa-miR-206, hsa-miR-613,
hsa-miR-183). Both, hsa-miR-206 and hsa-miR-613 are

predicted to regulate very similar to hsa-miR-1 sets of
the target genes (according to miRecords database). It is
known that hsa-miR-206, hsa-miR-613 and hsa-miR-1
target the ACATTCCA octamer and it was shown that
hsa-miR-206 and hsa-miR-1 were strongly expressed in
different tissues, like, skeletal muscle and tongue (32).
The situation with hsa-miR-183 is less clear as the targets
sets of hsa-miR-183 and hsa-miR-1 are not as similar as in
previous cases.
Links to the full results for all five-gene lists presented

in Table 2 are available at our web site (http://mips.
helmholtz-muenchen.de/proj/gene2mir/example/main.
html). These examples demonstrate the practical proof
that GeneSet2miRNA is able to reveal correctly the
signature of miRNA activity in the gene lists. In this
example, we knew in advance that the reported gene
list must be overrepresented with genes regulated by par-
ticular miRNA. Though GeneSet2miRNA uses theoreti-
cally predicted miRNA–gene interactions, in each case it
has successfully revealed significant traces of activity of
the transfected miRNA in the experimentally derived
gene list.

Table 3. Single enriched miRNA models reported by GeneSet2miRNA in the set of genes which respond to the treatment of the HeLa cells with

the miR-1

No. p-value, adjusted
for multiple testing
(Monte Carlo)

Hypergeometric
distribution, p-value

SET A targets SET A size SET B targets SET B size Model

1 0.0001 1.8e–47 37 80 189 15 360 hsa-miR-1.5
2 0.0001 8.4e–58 52 80 474 15 360 hsa-miR-1.4
3 0.0001 1.6e–40 43 80 552 15 360 hsa-miR-206.4
4 0.0001 4e–19 15 80 75 15 360 hsa-miR-613.5
5 0.0001 1.3e–25 25 80 234 15 360 hsa-miR-206.5
6 0.0001 1.9e–25 28 80 355 15 360 hsa-miR-613.4
7 0.0001 5.4e–08 9 80 137 15 360 hsa-miR-183.5
8 0.0002 2.1e–07 12 80 347 15 360 hsa-miR-183.4

Table 2. Summary of five gene lists used to validate GeneSet2miRNA performance

No. Article Cell types Transfected with miRNA Number of reported genes Source of gene list

1 (30) HepG2 liver cancer cells let-7 1334 (698 repressed and 636 up-regulated) Supplementary Table S1
2 (30) A549 lung cancer cells let-7 629 (244 repressed and 385 up-regulated) Supplementary Table S2
3 (31) HeLa cells miR-1 96 repressed genes Supplementary Table S1
4 (31) HeLa cells miR-124 174 repressed genes Supplementary Table S2
5 (31) HeLa cells miR-373 65 repressed genes Supplementary Table S4

Table 1. Types of gene identifiers recognized by GeneSet2miRNA and data sources used for Id mapping

Type of Ids File used

‘Gene Symbol’, ‘Ensembl’, ‘LocusTag’ ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
‘RefSeq Protein ID’, ‘RefSeq Transcript ID’ ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2refseq.gz
‘UniProt/Swiss-Prot’ ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_refseq_uniprotkb_collab.gz
‘UniGene’ ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2unigene
‘Affymetrix probe codes’ http://www.affymetrix.com/ Annotation files
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Validation of statistical treatment

In previous examples we demonstrated that
GeneSet2miRNA is capable of inferring correct models
from a gene list known to be overrepresented by
genes regulated by a given miRNA. Here we present
a vice-versa validation, i.e. we demonstrate that
GeneSet2miRNA is capable of recognizing a random
gene list. In (30) Affymetrix U133 arrays were used for
gene expression analyses. We used probes from this
array (about 22 000 probes in total) to generate random
gene lists. We generated 20 different random lists of
size 100. We analyzed 20 generated lists using
GeneSet2miRNA. Only in one case GeneSet2miRNA
reported the p-value of the inferred model to be better
than 0.05 (0.036), three times it was better then 0.1, four
times it was better then 0.2. These results correspond to
the definition of p-value: a probability to get the same
quality model for a random list. In other words, if statis-
tical treatment is correct then in N submission of different
random lists only in one case on average the p-value of
inferred models is expected to be better than 1/N. We
repeated the same test using random gene lists of size 25
and 1000. In both cases the results were similar to the
previous one. Therefore, by these examples we demon-
strated that GeneSet2miRNA provides correct estimates
of p-values for the inferred models.

Example 2. Beyond the experimental scope

The choice of this example is aimed to demonstrate that
GeneSet2miRNA can provide insight into the data that is
beyond the scope of currently available experimental tech-
nologies. It is widely accepted that miRNAs play an
important role in almost all biological process. However,
the nature of such biological processes, like loss of hetero-
zygosity (LOH) and copy number changes in a cancer
cells, for example, make it almost impossible to detect
experimentally the associated miRNA activity. The time
scale of these processes and their stochastic nature makes
experimental setup difficult. The only way to explore
experimentally these biological phenomena, now, is to
conduct analyses over many cell lines to detect chromo-
some regions which are on average more frequently sub-
jected to variations. The output of such studies can
be converted to genes that are located in the identified
chromosome regions. As we show in the next example,
GeneSet2miRNA is able to provide statistically validated

hypotheses concerning which miRNAs can be related to
these biological processes.

In a recently published study (33), Illumina 317K
whole-genome single-nucleotide polymorphism arrays
were used to define a comprehensive allelotype of mela-
noma based on loss of heterozygosity (LOH) and copy
number changes in a panel of 76 melanoma cell lines.
A total 174 homozygous deletions (HDs) were detected.
Among those HDs, 52 HDs seemed to target a single
locus, 87(50%) targeted more than one gene, and 35 of
the HDs did not encompass the coding region of an anno-
tated gene (human genome build hg17). Table 4 in the
article lists the chromosomal regions showing HDs
in one or more cell lines and about 170 genes that reside
in those regions. We used these genes as an input for our
tool.

According to the miRecord database, 140 of these genes
were predicted to be a target of at least one miRNA by at
least four prediction tools. Table 4 reports miRNA models
(pairs) enriched in the considered gene list. As one can see,
GeneSet2miRNA identified the traces of activity related to
several miRNAs. Thus, GeneSet2miRNA provided statis-
tically significant arguments that some miRNAs might
be involved in the considered biological phenomena pro-
viding the biologist with novel possible experimental
targets.

Interestingly, the hsa-miR-302s are found more abun-
dantly in pluripotent ES-cells than in differentiate prolif-
erating cells and have been shown to reprogram cancer
cells to a more ES-like pluripotent state (34). hsa-miR-
373 have been identified to be highly expressed in retino-
blastoma (35) and are potential oncogenes involved in
testicular germ cell tumors (36). hsa-miR-19a has been
shown to be involved in myeloma (37).

CONCLUSION

Automatic functional profiling has become the ‘de facto’
approach for the secondary analysis of high throughput
data (18). A number of tools employing available
gene functional annotations have been developed.
GeneSet2miRNA is a first web tool that employs profiling
methodology to identify the signature of miRNA activity
in a gene list. Similar ideas were proposed recently and
implemented using the R software package (38).
GeneSet2miRNA provides technical support to the user

Table 4. Enriched miRNA models (pairs) reported by GeneSet2miRNA in the set of about 170 genes that reside in 174 homozygous deletions

regions detected in a panel of 76 melanoma cell lines

p-value, adjusted
for multiple testing
(Monte Carlo)

Hypergeometric
distribution, p-value

SET A
statistics

SET A size SET B
statistics

SET B size Model

1 0.001 1.8e–08 10 140 89 15 329 [(hsa-miR-19a.4) AND (hsa-miR-520c-3p.4)]
2 0.001 8.6e–08 17 140 388 15 329 [(hsa-miR-520d-3p.4) AND (hsa-miR-520a-3p.4)]
3 0.001 9.2e–08 17 140 390 15 329 [(hsa-miR-302a.4) AND (hsa-miR-520d-3p.4)]
4 0.001 2e–07 17 140 413 15 329 [(hsa-miR-302a.4) AND (hsa-miR-520a-3p.4)]
5 0.001 2.1e–07 17 140 416 15 329 [(hsa-miR-520e.4) AND (hsa-miR-520a-3p.4)]
6 0.001 3.4e–07 16 140 379 15 329 [(hsa-miR-520e.4) AND (hsa-miR-520d-3p.4)]
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that corresponds to the best currently available stan-
dards in the field. It has a simple submission web page
that covers several model organisms as well as the most
popular gene/protein identifiers. These features make
GeneSet2miRNA an attractive practical tool for biologists
interpreting new experimental data.
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